should be defined so as to separate will be impossible to do so. How-
0.50 mg/kg (mouse; subcutaneous
gested in CCD/301, or a value close
tions which would have to be
If general agreement were reached
specific toxicity threshold, the precise
doing so would be worked out by experts
standardized, there will be a certain
requirements. It is to be expected that
samples of chemical will still obtain
because it is difficult to
involved in making toxicity tests
rates, a range of 20 per cent on either
orally considered good. Studies on the
samples have demonstrated that a broader
and 3 for oral toxicity values and
and oral toxicity values, the range may
LD₅₀ value reported is the average
problems could pose a problem in applying
to know. Normally only one or two inde-
and it is quite possible that these
the average value that would be obtained
dependent determinations. For a
ancy might report the compound to
a different laboratory might con-
united the toxicity
LD₅₀ of .050 mg/kg (mouse; sub-
that a standardized experimental
a compound with an average LD₅₀
below the limit, the possible results
approximately from 0.18 mg/kg to
greater than 0.50 mg/kg, it might
would not be prohibited. Analogously,
average LD₅₀ value of 0.80 mg/kg,
kg limit, a single laboratory might
report a value as low as 0.40 mg/kg. In this case, prohibition might well
be advocated.

Obviously, some differences may arise about application of the pro-
hibition to a specific compound even if a toxicity criterion is estab-
lished. One possible way to help resolve such differences would be to
have an appropriate independent laboratory measure the toxicity.

Super-Toxic Dual-Purpose Compounds

As noted above, it is unlikely that a toxicity criterion can be found
that will cleanly separate single-purpose super-toxic CW agents from
dual-purpose chemicals. A few dual-purpose compounds are likely to
be more toxic than the limit established by the toxicity criterion.
The data in Table 4 indicate that most of these compounds will be
drugs. Strict application of the toxicity criterion would lead to a ban
on these super-toxic dual-purpose compounds. However, super-toxic
drugs are produced in very small quantities and are not well suited as
chemical warfare agents. It might be useful to consider application of
the criterion in such a way that super-toxic drugs would not be pro-
hibited. This might be accomplished by allowing super-toxic chemicals to
be produced in quantities necessary for legitimate use as a drug if the
use as a drug had been demonstrated beforehand.

United States Working Paper Submitted to the Conference of
the Committee on Disarmament: Chemical Agent Destruction,
July 16, 1974

In a previous working paper (CCD/367) the United States delegation
described the environmental protection and safety procedures in-
volved in current United States operations for demilitarizing limited
quantities of chemical weapons. The example discussed was the
planned demilitarization and disposal of nerve agent cluster bombs.

This paper describes in detail the actual procedures employed in
disposal of mustard gas at Rocky Mountain Arsenal near Denver,
Colorado, an operation that was completed in March 1974. Possible
methods of verification of the disposal operation are also discussed.
We hope that this information on the characteristics of actual disposal
operations will be useful to the Committee in its consideration of veri-
fication of chemical agent destruction.

Background

In the fall of 1968 the Department of the Army decided to dispose of
certain chemical agents and munition stocks, including the mustard
agent stored at Rocky Mountain Arsenal near Denver, Colorado. These

mustard stocks amounted to 3701 tons and were stored as bulk in containers which hold approximately 0.9 ton of agent.

In response to an Army request a proposed plan for disposal at sea was reviewed in the Summer of 1969 by a panel of experts under the auspices of the National Academy of Sciences. These experts, drawn primarily from leading industrial, educational and research institutions, recommended that the bulk mustard agent at Rocky Mountain Arsenal be destroyed by incineration.

This recommendation was adopted by the Army. A plan for disposal by incineration was prepared and made public. It was reviewed by interested agencies, as required under the National Environmental Protection Act, and revised. A final statement of the plan was made public in early July 1971.

Small-scale disposal operations were initiated shortly after the final statement was filed. During this stage of the operations, the disposal equipment was tested and minor changes in the disposal plan were made in order to resolve the few difficulties encountered. Full-scale disposal operations began in September 1972.

Outline of Disposal Plan

Mustard gas decomposes rapidly at about 425°C to produce three gases—sulphur dioxide, carbon dioxide and hydrogen chloride. In the disposal operation, the mustard gas was destroyed by incineration. The incineration products were removed from the exhaust stream and converted to harmless salts.

Steps of the Disposal Plan

(1) Transfer of Agent Containers. The agent containers were stored in the toxic agent area at Rocky Mountain Arsenal. This area was under continuous security guard surveillance and the mustard containers were visually inspected for leakage by depot personnel (daily during warm weather and every three days during cool weather). Prior to removal from the area, the containers were checked for any possible liquid leakage by using a standard detection paper that changes color when exposed to mustard. They were then loaded on a flat bed truck and were transported under security guard escort to the mustard plant area for disposal. As a safety precaution a decontamination truck followed the loaded truck.

(2) Unloading and Thawing. Upon arrival at the mustard disposal facility, the containers were unloaded and placed in a thaw room where they remained for at least 48 hours at a temperature between 40°C and 60°C. The thaw room, as well as other areas of the facility where a potential hazard from mustard vapor existed, were maintained under a negative pressure. Since mustard gas freezes between 5°C and 15°C, it was heated in the thaw room to get as much as possible of the solid residue from the bottom of the container into solution. The rare liquid leaks that occurred during this 2-day period were trapped in a

...
01 tons and were stored as bulk in
ery 0.9 ton of agent.

t a proposed plan for disposal at sea
969 by a panel of experts under the
ity of Sciences. These experts, drawn
ial, educational and research insti-
ustard agent at Rocky Mountain
ition. A plan for disposal and
made public. It was reviewed by
under the National Environmental
nal statement of the plan was made
ns were initiated shortly after the
ring this stage of the operations, the
and minor changes in the disposal plan
the few difficulties encountered. Full-
in September 1972.

dly at about 425°C to produce three
oxide and hydrogen chloride. In-
[gas] was destroyed by incinera-
were removed from the exhaust stream
mbers. The agent containers were stored
Mountain Arsenal. This area was
anced surveillance and the mustard con-
for leakage by depot personnel (daily
er three days during cool weather).
, the containers were checked for any-
ging a standard detection paper that
mustard. They were then loaded on a
erted under security guard escort to the
. As a safety precaution a decontamina-
uck.

Upon arrival at the mustard disposal
loaded and placed in a thaw room where
urs at a temperature between 40° C and
as other areas of the facility where a
vapor existed, were maintained under
ard gas freezes between 5° and 15°C, to
t as much as possible of the solid
the container into solution. The rack-
ng this 2-day period were trapped in a
sump where they were decontaminated with a standard military
decontaminant that reacts rapidly with mustard and achieves complete
decomposition in about five minutes. These liquids were subse-
ently checked to ensure absence of mustard, added to the spent
scrubber brine, and spray dried.

Any vapors which were generated were vented through the duct in
the floor of the thaw room and removed from the air by an absolute
filter system with essentially 100 per cent efficiency.

(3) Draining of Containers. From this thaw room the containers
were taken to the unloading booths by overhead crane, placed inside
the booths and remotely attached to an evacuating hose. The mustard
then was drawn off under vacuum. Determination of the quantity of
mustard removed from the container was accomplished by weighing
the container before and after the operation.

(4) Incineration of Agent. The mustard which had been removed
from the container was pumped into a holding tank from which it
was later pumped to the incinerator. It arrived at the incinerator
through double-walled piping and was sprayied into the incinerator
where it was heated to temperatures of 750° to 875°C for 0.3 second,
thus thermally decomposing it completely. At peak efficiency the dis-
posal rate was over 7 litres per minute.

(5) Scrubbing of Effluent Gases. In the incineration process sulphur
dioxide and hydrogen chloride are generated. To wash these pollutants
out of the effluent gases, the gases were passed through a scrubber
system where they were brought into contact with a solution of sodium
hydroxide, a strong caustic. This resulted in a brine solution of in-
organic salts: sodium sulphate, sodium sulphite, sodium chloride, and
sodium carbonate. This salt solution was then evaporated to dryness
and the residue of salts compacted. A test was performed periodically
to verify that the salts contained no mustard.

The effluent gases were then passed through an electrostatic precipi-
tator to remove particulate matter (mostly ferric oxide resulting
from corrosion of the steel containers) before being exhausted from
the stack.

(6) Disposal of Salts. The compacted salts were transported in
lined 55-gallon drums to a warehouse where they remain in storage
pending final disposition. No decision has yet been made on the best
method for disposal of the salts. Approximately 4,000 tons of salt
were generated during the operation.

(7) Decontamination and Disposal of Containers. Prior to removal
from the booth where it was emptied, each container was inspected
and externally decontaminated if required. It was then moved to a
temporary storage area. During the incineration of the bulk agent a
separate incinerator furnace was used to decontaminate the containers.

In this process a container was removed from the storage area. Upon
arrival at the furnace area, two holes were remotely punched in the
container to provide ventilation and release of combustion gases in
lieu of removing valves and plugs. Following this operation, the con-
tainers were placed in the furnace, where any residual mustard and impurities were incinerated. The amount of time that each container remained in the furnace depended on the amount of residue it contained initially; however, the average was about 2 hours at temperatures in excess of 425°C. The effluent from the incinerator operation was passed through a scrubber (sodium hydroxide solution) to remove the combustion products sulphur dioxide and hydrogen chloride.

Following cooling, quality control personnel checked the container with standard detection material to assure that all traces of mustard had been removed before it was transported to the holding area. The containers will be recycled as scrap metal.

Verification of Agent Destruction

In the disposal process described in the preceding sections, opportunities for verification appear to exist at several points. It must be kept in mind, however, that the characteristics of the disposal process may vary according to the type of agent being destroyed, whether the agent is stored in bulk or in munitions, and the safety and environmental regulations which must be followed.

Verification of disposal might be conducted in a variety of ways, depending upon the degree of access accorded verification personnel. At one extreme, verification might be limited to remote observation via closed-circuit television with no access to the facilities themselves. At the other extreme, unrestricted inspection of the disposal site might be permitted, including unrestricted access to all buildings and records and analysis of chemical samples.

In the paragraphs that follow, verification of disposal will be discussed using the United States procedure for disposal of bulk mustard agent as an illustration.

(a) **Steps 1 and 2: Transfer of agent containers; unloading and thawing.** In these steps there may be several indicators that toxic chemical agents are being handled. A few of the most recognizable indicators are:

- a. Decontamination equipment readily available.
- b. Workers in protective clothing and equipped with protective masks.
- c. Toxic agent warning sign attached to vehicle.
- d. Security measures, including a security escort front and rear when travelling.

By their nature these indicators would be easily observed. However, they could also easily be staged and their value for verification is therefore questionable.

(b) **Step 3: Draining of Containers.** This step provides the first opportunity for positive assurance that a toxic chemical agent is present. This assurance can be achieved, however, only if full access to the facility is allowed. During the draining phase of the process, it would be feasible to take a (10 ml) sample from the liquid in the container and to determine the type and concentration of agent present.

(c) **Step 4: Analysis of samples.** The liquid samples should be subjected to tests that will indicate the type and concentration of agent present.

(d) **Step 5: Disposal of wastes.** The agent wastes may be disposed of in various ways, depending on the facilities available.

A third method of verification is to ensure that the agent is destroyed. This might be achieved by analyzing the agent for characteristic impurities that would be present if the agent were still present.

Preliminary Considerations

1. There are several steps in the destruction process that are important steps in the verification of the destruction process.
2. A number of the steps are critical to the success of the disposal process.
would be feasible to tap the drain line to the storage tank. A small (10 ml) sample of liquid could be withdrawn and analysed to determine the type and concentration of agent. This would provide positive verification that agent was being drained from the container.

(c) Step 4: Incineration of Agent. Verification at this step could provide the best assurance that toxic chemical agent is actually being destroyed. In the destruction of the mustard agent, the agent is transferred from the storage tank to the furnace through a single pipe. A tap valve could be installed in this pipe at the point just before the mustard is injected into the furnace for burning. As in the previous step, a sample could be withdrawn and analysed as to the type of agent and its concentration. Data over a period of time could be compared with data from the previous step to ensure the agent had not been diluted (part diverted and another liquid substituted).

Analysis of the salts could provide another method of verification. This might be considered less intrusive than sampling and analysis of the agent itself. A mustard gas molecule contains one sulphur atom and two chlorine atoms. No other chlorine or sulphur compounds are involved in the disposal process. As a result, there should be a 2:1 ratio between chlorine and sulphur atoms in the salts. The salts resulting from mustard disposal at Rocky Mountain Arsenal have been analysed and found to have the approximately expected ratio.

A third method of verification might be to try to obtain a materials balance. Records would be needed for the quantity of agent to be destroyed, amount of caustic being added, and total weight of the end product salts. It is possible to calculate the amounts of salts which should be produced from disposal of a given quantity of a specific agent. For this method to work, there would have to be no loss of gases, liquid or solids, from the system. In other words, the system would have to be totally contained. This was not the case at Rocky Mountain Arsenal. As is typical of incineration, minor losses of gases were anticipated and did occur in the process (mostly sulphur dioxide being exhausted from the stack), which altered somewhat the total weight of salts produced as well as the relative quantities of the different compounds.

To assist in the materials balance procedure it would be useful to have a flowmeter in the line transferring agent from the holding tanks to the furnace.

(d) Steps 5-7: Scrubbing of Effluent Gases; Disposal of Salts; Decontamination and Disposal of Containers. In the case of mustard disposal, these steps did not appear to provide any important additional opportunities for verification of destruction.

Preliminary Comments and Conclusions

(1) There are several indicators which could provide some assurance to observers that disposal operations were being carried out.

(2) A number of means for misleading observers exist, including...
the staging of indicators and substitution of an industrial chemical for agent.

(3) A high degree of assurance that no evasion is taking place during the disposal process could be obtained through technical methods of inspection.

United States Working Paper Submitted to the Conference of the Committee on Disarmament: Diversion of Commercial Chemicals for Weapons, July 16, 1974

As many delegations, including our own, have noted, there are three major categories of substances related to chemical warfare:

(1) **Single-purpose agents.** These agents have no large-scale use for prophylactic, protective or other peaceful purposes. This category includes the super-toxic organophosphorus nerve agents, as well as some less toxic agents which have no important peaceful applications.

(2) **Dual-purpose agents.** Chemicals in this category have important civilian applications, but might also be used as CW agents. Many of the CW agents used in World War I are in this group, including phosgene (carbonyl chloride), chlorine and hydrogen cyanide.

(3) **Precursors.** Chemical compounds used as intermediates in the production of super-toxic agents may or may not have civilian application. For example, phosphorus trichloride, a key precursor in the production of organophosphorus nerve agents, is widely used as an intermediate in the manufacture of pesticides and plasticisers. On the other hand, another important precursor, methylphosphonic dichloride, is not currently used in producing commercial organophosphorus chemicals (but could be in the future).

This suggests that verification of a ban on production of CW agents has two major aspects: (a) ensuring that single-purpose CW agents and single-purpose precursors are not being produced and (b) making certain that dual-purpose agents and dual-purpose precursors are not being diverted to non-peaceful purposes.

Several delegations have suggested that statistical monitoring of chemical production could play an important role in deterring diversion of dual-purpose chemicals to prohibited military uses. Under this approach, data on the production and consumption of raw materials and intermediates would be analysed to ensure that no diversion occurred. The United States delegation presented some preliminary conclusions and comments on this approach in a previous working paper (CCD/311, 25 August, 1970). At that time we noted that there were certain problems and disadvantages to be overcome, particularly in regard to identifying deliberate attempts at deception.

1 CCD/437, July 16, 1974.